Influence of Soil Properties and Test Conditions on Sorption and Desorption of Testosterone

نویسندگان

  • Rui Ma
  • Tian C. Zhang
  • Yong Qi
  • William L. Kranz
  • Daniel D. Snow
  • Terry L. Mader
  • Charles A. Shapiro
  • David P. Shelton
  • Simon J. van Donk
  • David D. Tarkalson
  • Steve Ensley
چکیده

In this study, batch sorption and desorption experiments were conducted for testosterone using four agricultural soils and five clay minerals. Significant differences in sorption behavior were observed between abiotic and biotic systems. The Freundlich sorption coefficient Kf ðμg=gÞ=ðμg=mLÞn ranged from 8.53 to 74.46 for soils and from 35.28 to 1,243 for clays. The maximum sorption capacity (μg=g) of soils ranged from 25.25 to 440.61 for soils and from 168.46 to 499.84 for clays. Correlation of the sorption model parameters with the soil properties indicated that both clay content and soil organic matter are important variables in predicting testosterone sorption behavior. Observed testosterone desorption from agricultural soils ranged from approximately 14 to 100% after three desorption cycles, and the desorption percentage decreased as the initial testosterone concentration decreased. It was determined that the temperature, ionic strength, water/soil ratio, and soil depth influenced the sorption and desorption of testosterone. Desorption significantly increased with the soil depth (p < 0.05) and with the increase in the water/soil ratio. Temperature had an inverse effect on the sorption capacity of the soils tested. Thermodynamic calculations showed that the enthalpy change (ΔH) of the soils tested ranged from 12.9 to 20.7 kJ=mol, indicating a weak interaction between the testosterone and soil. The authors’ results suggest that additional studies on how soil particles with different size fractions affect hormones’ fate and transport are needed to determine the potential risk of testosterone leaching or runoff. DOI: 10.1061/(ASCE)EE.1943-7870.0000937. © 2015 American Society of Civil

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Co-existing Heavy Metals and Natural Organic Matter on Sorption/Desorption of Polycyclic Aromatic Hydrocarbons in Soil: A Review

Polycyclic aromatic hydrocarbons (PAHs), abundant in mixed contaminant sites, often coexist with heavy metals. The fate and remediation of PAHs depend heavily on the sorption and desorption behavior of these contaminants. The sorption behavior can in turn be highly affected by certain soil components and properties, such as soil organic matter (SOM) and the presence of heavy metals. Through rev...

متن کامل

Effect of Co-existing Heavy Metals and Natural Organic Matter on Sorption/Desorption of Polycyclic Aromatic Hydrocarbons in Soil: A Review

Polycyclic aromatic hydrocarbons (PAHs), abundant in mixed contaminant sites, often coexist with heavy metals. The fate and remediation of PAHs depend heavily on the sorption and desorption behavior of these contaminants. The sorption behavior can in turn be highly affected by certain soil components and properties, such as soil organic matter (SOM) and the presence of heavy metals. Through rev...

متن کامل

بررسی اثر حضور هیومیک اسید در جذب فنانترن در خاک رس کائولین

Background & Objectives: Polycyclic aromatic hydrocarbons (PAHs) are considered as important organic contaminants due to their high toxicity and carcinogenic properties. Among PAHs, phenanthrene is found in most contaminated sites. Sorption and desorption of phenanthrene in soil affect the fate of the contaminant in soil-water system. Presence of organic matter (OM) in the soil matrix can also ...

متن کامل

جذب و واجذب فلورید و پسماند هم‌دما در یک خاک آهکی اصفهان

The sorption and desorption of fluoride by soil can play an important role in the transport of fluoride in soil. The study was conducted on the soil from Isfahan University of Technology research station site (two depths of 0-30 and 30- 60 cm). Fluoride sorption reactions were examined by equilibrating 0, 2.5, 5, 10, 25, 50 and 100 mg L-1 NaF solution with soils for 23 hr. The desorption experi...

متن کامل

تأثیر اسید‌ هومیک بر جذب و واجذب روی

Humic substances are the most important organic fractions in soils and have affinity towards trace metals. In order to evaluate the effect of humic acid on zinc (Zn) sorption and desorption by soil,‌ a batch experiment was conducted with two soil samples which were different in clay and calcium carbonate contents. Three levels of humic acid (0,‌ 200, 500 mg/L) and various Zn concentrations (0 t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015